Outline of Presentation

$>$ Definition of Rings, Commutative \& Non-commutative Rings
Examples from Number Systems
$>$ Ring of Integers Modulo n
Ring of Quaternions
$>$ Ring of Matrices
$>$ Polynomial Rings
Rings of Continuous functions
Properties of Ring

Definition: Let R be a non-empty set having two operations, addition ' + ' and multiplication ' \because ' Then the algebraic structure ($\mathbf{R},+,$.) is called a Ring if the following properties are satisfied:

1. \mathbf{R} is an Abelian group under addition

(i) If $a, b \in R$ then $a+b \in R$.
(ii) If $a, b, c \in R$ then $a+(b+c)=(a+b)+c$. (Associativity)
(iii) If $a, b \in R$, then $a+b=b+a$. (Commutativity)
(iv)If $a \in R, \exists 0 \in R$ such that $a+0=a=0+a$.
(v) If $a \in R, 0 \in R, \exists-a \in R$ such that $a+(-a)=0=(-a)+a$.
2. \mathbf{R} is semi-group under multiplication.
(i) If $a, b \in R$ then $a . b \in R$.
(ii) If $a, b, c \in R$ then $a(b . c)=$ (a.b).c (Associativity)
3. Distributive laws hold.
(i) If $a, b, c \in R$, then $a .(b+c)=a . b+a . c$
(ii) If $a, b, c \in R$, then $(b+c) a=b a+c a$.

Definition: A ring R is said to be commutative ring if $a . b=b . a \forall a, b \in R$.
Definition: A ring R is said to be non-commutative ring if $a . b \neq b . a \quad \forall a, b \in R$.
Definition: A ring R is said to be ring with unity if there exists

$$
1 \in R \text { such that } a .1=a=1 . a \text { for all } a \in R
$$

Examples:

1. $\mathrm{R}=\mathrm{Z}$, the set of integers is a ring for the usual addition and multiplication. It is commutative ring and has 1 as unit element.
2. $R=2 Z$, the set of even integers is a commutative ring for the usual addition and multiplication. It has no unit element.
3. $R=Q$, the set of rational numbers, $R=R$, the set of real numbers and $R=C$, the set of complex numbers are commutative rings with unity under usual addition and multiplication.
4. Let $R=\{p+q \sqrt{ } 2: p, q \in Q\}$. Then R is a ring w.r.t. addition and multiplication of real numbers.
Solution: Let $\mathrm{p}_{1}+\mathrm{q}_{1} \sqrt{ } 2, \mathrm{p}_{2}+\mathrm{q}_{2} \sqrt{ } 2 \in \mathrm{R}, \mathrm{p}_{1}, \mathrm{q}_{1}, \mathrm{p}_{2}, \mathrm{q}_{2} \in \mathrm{Q}$.
$\operatorname{Now}\left(p_{1}+q_{1} \sqrt{ } 2\right)+\left(p_{2}+q_{2} \sqrt{ } 2\right)=\left(p_{1}+p_{2}\right)+\left(q_{1}+q_{2}\right) \sqrt{2} \in R$

$$
\text { for } \mathrm{p}_{1}+\mathrm{p}_{2}, \mathrm{q}_{1}+\mathrm{q}_{2} \in \mathrm{Q}
$$

and

$$
\left(\mathrm{p}_{1}+\mathrm{q}_{1} \sqrt{ } 2\right)\left(\mathrm{p}_{2}+\mathrm{q}_{2} \sqrt{ } 2\right)=\left(\mathrm{p}_{1} \mathrm{p}_{2}+2 \mathrm{q}_{1} \mathrm{q}_{2}\right)+\left(\mathrm{p}_{1} \mathrm{q}_{2}+\mathrm{p}_{2} \mathrm{q}_{1}\right) \sqrt{2} \in \mathrm{R}
$$

as $p_{1} p_{2}+2 q_{1} q_{2}, p_{1} q_{2}+p_{2} q_{1} \in Q$.
Thus, R is closed with respect to addition and multiplication, R is commutative and associative. $0+0 \sqrt{ } 2$ is the additive identity of R.
If $\mathrm{p}+\mathrm{q} \sqrt{ } 2 \in \mathrm{R}$, then $(-\mathrm{p})+(-\mathrm{q}) \sqrt{ } 2 \in \mathrm{R}$ and $[(-\mathrm{p})+(-\mathrm{q}) \sqrt{ } 2]+(\mathrm{p}+\mathrm{q} \sqrt{ } 2)=0+0 \sqrt{ } 2$
$1=1+0 \sqrt{ } 2$ is the unit element of R. Hence R is commutative ring with unity.
5. The set $G=\{a+i b: a, b \in Z\}$ of Gaussian integers forms a commutative ring with unity under addition and multiplication of complex numbers.
6. Let $\mathrm{R}=\mathrm{Z}_{\mathrm{n}}=\{0,1,2,3, \ldots \ldots \ldots(\mathrm{n}-1)\}$ and addition modulo n and multiplication modulo n are the operation on Z_{n}. Then Z_{n} is a commutative ring with unity. It is called the ring of residue classes modulo n . (the proof is same as next example)
e.g. The set $R=\{0,1,2,3,4,5\}$ is a commutative ring with unity w. r.t. operation of +6 (addition modulo 6) and \times_{6} (multiplication modulo 6) .
Sol: The composition table for $+_{6}$ is as under

+6	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

From the table it is clear that all possible sum belong to R, therefore R is closed w.r.t. +6 . Associative and commutative laws hold under $+_{6} .0$ is additive identity for all a in R. Inverse of each element exists, as $0+\mathbf{0}=0,1+\mathbf{5}=0,2+\mathbf{4}=0,3+\mathbf{3}=0,4+\mathbf{2}=0,5+\mathbf{1}=0$.
The composition table for x_{6} as under

$$
\begin{array}{|l|l|l|l|l|l|l}
\hline x_{6} & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
$$

1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

From the table, it is clear that R is closed w.r.t. multiplication(mod.6). Associative and commutative laws hold in R under X_{6}.
Further x_{6} is distributive in R w.r.t. $+_{6}$. If a,b,c are any elements of R, then
$\mathrm{a} \times_{6}\left(\mathrm{~b}+{ }_{6} \mathrm{c}\right)=\mathrm{a} \times_{6}\left(\mathrm{~b}+{ }_{6} \mathrm{c}\right)$
$=$ least non-negative remainder when $a b+a c$ is
divided by 6
$=(\mathrm{ab})+{ }_{6}(\mathrm{ac})$
$=\left(a \times_{6} b\right)+{ }_{6}\left(a \times_{6} c\right)$
Similarly, we have $\left(b+{ }_{6} c\right) \times_{6} a=\left(b x_{6} a\right)+\left(c \times_{6} a\right)$.
Also 1 is the identity for X_{6}. Therefore, R is a commutative ring with unity.
7. Example: Let $\mathrm{R}=\{\mathrm{a}+\mathrm{bi}+\mathrm{cj}+\mathrm{dk} / \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are real numbers $\}$.

Define + in R as

$$
(a i+b j+c k+d j)+\left(a^{\prime}+b^{\prime}+c^{\prime}+d^{\prime}\right)=\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) i+\left(c+c^{\prime}\right) j+\left(d+d^{\prime}\right) k .
$$

Define \times in R by the rule

$$
\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=-1, \mathrm{ij}=\mathrm{k}=-\mathrm{ji}, \mathrm{jk}=\mathrm{i}=-\mathrm{kj}, \mathrm{ki}=\mathrm{j}=-\mathrm{ik} .
$$

Then R is an abelian group with $0=0 \mathrm{i}+0 \mathrm{j}+0 \mathrm{k}$ as zero element and $-\mathrm{a}-\mathrm{bi}-\mathrm{cj}-\mathrm{dk}$ as the inverse of $\mathrm{a}+\mathrm{bi}+\mathrm{cj}+\mathrm{dk}$. Also, R is a semigroup under multiplication and distributive property holds good.
Thus, R is a ring with $1=1+0 i+0 j+0 k$ as unit element of $R . R$ is not commutative as i.j is not equal to j.i. This ring is called ring of quaternions.
8. Example: The set of R of all nxn matrices with their entries as real numbers is a non-commutative ring with unity w.r.t. matrix addition and multiplication.
Solution: As the sum and product of two $\mathrm{n} \times \mathrm{n}$ matrices is again a $\mathrm{n} \times \mathrm{n}$ matrices. Thus, R is closed w.r.t. addition and multiplication of matrices. R has the following properties.
(i) $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C}) \quad$ for all $\mathrm{A}, \mathrm{B}, \mathrm{C} \in \mathrm{R}$
(ii) $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A} \quad$ for all $\mathrm{A}, \mathrm{B} \in \mathrm{R}$
(iii) If $0 \in R$ is a null matrix, then

$$
0+\mathrm{A}=\mathrm{A}=\mathrm{A}+0 \quad \text { for all } \mathrm{A} \in \mathrm{R}
$$

(iv) For each $A \in R$, there exist $-A \in R$ s.t.

$$
\mathrm{A}+(-\mathrm{A})=0=(-\mathrm{A})+\mathrm{A}
$$

(v) $\mathrm{A}(\mathrm{BC})=(\mathrm{AB}) \mathrm{C}$ for all $\mathrm{A}, \mathrm{B}, \mathrm{C} \in \mathrm{R}$
(vi) $A(B+C)=(A B) C \quad$ for all $A, B, C \in R$
$(B+C) A=B A+C A$ for all $A, B, C \in R$
(vi)If $\mathrm{I} R$ is a unit matrix, then $A I=A=I A$ for all $A \in R$.

Since the multiplication of matrix is not commutative in general, $t+$ herefore R is a non-commutative ring with unity as unit matrix.

Example 8: The set P of all polynomial over a ring R forms a ring under addition and multiplication defined as follows:

$$
\begin{gathered}
f+g=\left(a_{0} b_{0}+a_{1} b_{1}+a_{2} b_{2}+\cdots .\right) \\
f . g=\left(c_{0}+c_{1}+c_{2}+\ldots\right)
\end{gathered}
$$

where $c_{k}=\left(a_{0} b_{k}+a_{1} b_{k-1}+a_{2} b_{k-2+} \cdots \cdots\right)=\sum_{i+j=k} a_{i} b_{j}$ for $k \geq 0$. Then P is ring of polynomials over R .

Example 9: The set $\mathrm{C}[0,1]$ of all real valued continuous functions defined in the closed interval $[0,1]$ is a commutative ring with unity w.r.t. the addition and multiplication of functions defined as follows:

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x) \\
& (f \cdot g)(x)=f(x) g(x)
\end{aligned}
$$

where $f, g \in C[0,1]$.

Properties of Ring

Theorem : If $(R,+, x)$ is a ring, then for all $a, b, c \in R$. Then
(i) $\mathrm{a} .0=0=0 . \mathrm{a}$ for all $\mathrm{a} \in \mathrm{R}$
(ii) $\mathrm{a}(-\mathrm{b})=-(\mathrm{ab})=(-\mathrm{a}) \mathrm{b} \quad$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{R}$
(iii) $(-a)(-b)=a b$ for all $a, b \in R$
(iv) $a(b-c)=a b-a c$ for all $a, b, c \in R$
(v) $b(c-a)=b c-b a$ for all $a, b, c \in R$

Proof: (i) We have $0=0+0$

$$
\mathrm{a} .0=\mathrm{a} \cdot(0+0)=\mathrm{a} .0+\mathrm{a} .0 \quad \text { (by distributive property of } \mathrm{R}) .
$$

Also, $0+\mathrm{a} .0=\mathrm{a} .0=\mathrm{a} .0+\mathrm{a} .0($ as 0 is additive identity of R$)$. By cancellation law for addition in $R, 0=a .0$. Similarly, we have $0 . a=a$
(ii) Suppose $b \in R$, then there exist $-b \in R$ s.t. $b+(-b)=0$.
$a(-b+b)=a .0$. Then, by using distributive property of R and (i), we have $a(-b)+a b=0$, which implies that $a(-b)=-a b$.
Similarly, we have $(-a) b=-a b$.
(iii) L.H.S. $(-a)(-b)=-[(-a) b]=-[-(a b)]=a b=$ R.H.S , using (ii)
(iii) L.H.S $a(b-c)=a[b+(-c)]=a b+a(-c)=a b-a c$,
using distributive property and (ii).
(v)Similar to part (iv).

Exercise: If R is a ring such that $a^{2}=a \forall a \in R$, then
(i) $a+a=0 \forall a \in R$
(ii) $a+b=0 \Rightarrow a=b$
(iii) R is commutative.

Solu: (i) $a \in R \Rightarrow a+a \in R$. By using given condition,

$$
\begin{aligned}
& (a+a)^{2}=a+a \\
\Rightarrow & (a+a)(a+a)=a+a \\
\Rightarrow & a(a+a)+a(a+a)=a+a \\
\Rightarrow & \left(a^{2}+a^{2}\right)+\left(a^{2}+a^{2}\right)=a+a \\
\Rightarrow & (a+a)+(a+a)=(a+a)+0 \\
\Rightarrow & a+a=0, \text { by using Left Cancellation Laws. }
\end{aligned}
$$

(ii) Given $\mathrm{a}+\mathrm{b}=0$, also by (i) $\mathrm{a}+\mathrm{a}=0$

Therefore, $\mathrm{a}+\mathrm{b}=\mathrm{a}+\mathrm{a}$. Hence, $\mathrm{a}=0$, using Left Cancellation laws.
(iv) For all $a, b \in R \Rightarrow a+b \in R$. Then by given condition,

$$
(a+b)^{2}=a+b
$$

$$
\begin{gathered}
\Rightarrow(a+b)(a+b)=a+b \\
\Rightarrow a(a+b)+b(a+b)=a+b \\
\Rightarrow\left(a^{2}+a b\right)+\left(b a+b^{2}\right)=a+b \\
\Rightarrow(a+a b)+(b a+b)=a+b \\
\Rightarrow a+b+a b+b a=a+b
\end{gathered}
$$

$\Rightarrow a b+b a=0$, by using left cancellation law
$\Rightarrow a b=b a$, using (ii).
Hence, R is commutative.

